Death of the Dinosaurs, Part 3

We finally conclude our deep dive into the extinction event that killed the dinosaurs. We end with Robert dePalma, whose findings shaped our understanding of the asteroid.

            At first it was just disappointment. Thirty-year-old graduate student, Robert dePalma, was excavating a fossil site on a ranch in North Dakota. When he began digging in 2021, he had hoped to find layers of sediment that would show the years leading up to the end of the Cretaceous Time Period. The site was a large area, covering about two acres and measuring about three-feet deep, but it was clear the entire layer had been laid down all at once by some kind of flood. There were fish fossils, but they broke apart into tiny flakes when he tried to dig them out.

North America at the End of the Cretaceous Period
Ron Blakely, Colorado Plateau Geosystems is credited for the maps, in the paper, and Terry A. Gates et al are stated to be the copyright holders for the paper and its contents, CC BY 1.0, via Wikimedia Commons

            He continued to dig, though, and he found tiny, white/gray bits that looked like sand. When he looked at them under a magnifying glass, he recognized their tear-drop shape as belonging to microtektites. Tektites, as mentioned in last week’s blog, are created when rock becomes so hot that it turns to liquid. They can be formed by volcanos or by an asteroid hitting the earth. The liquid rock is flung into the air in small bits until it goes high enough the air cools them. As they fall to Earth, they form tear-shaped, glass fragments. Over millions of years, they turn to clay. The tektites he found were so small they were classified as microtektites. DePalma found millions of them. He knew the bed he was digging in was from the end of the Cretaceous Time Period. It dawned on him that the microtektites might be from the asteroid that hit the Earth then.

            DePalma continued his excavation. He found an amazing number of fossils. Most of the time fossils are flat, crushed by layers and layers of rock, laid down over time. But many of these fossils were three-dimensional because they had been deposited and covered immediately, and the sediment around them acted as support.

            He found new species of fish and a variety of plants, including tree trunks smeared in amber. The amber contained what appeared to be asteroid debris. He suspected that the site he was working on had been formed the very day the asteroid hit! If that was true, it was an incredible find!

Robert de Palma describing his find at NASA
NASA Goddard Photo and Video, Public domain, via Wikimedia Commons

            As a child and young adult, dePalma had collected bones and fossils. He lent them to a nearby museum where he also reconstructed some dinosaur skeletons. But when the museum went bankrupt, they refused to return his collection. After that he was very careful about the fossils he excavated. In the United States, fossils belong to whoever’s property they are found on and can be sold to anyone. It is not unusual for a paleontologist or commercial fossil collector to sign a contract with a private land owner for an excavation. They usually agree to split the profit on any fossils that are found and sold. Museums and universities don’t like this arrangement because important finds can disappear into private collections.

            Realizing that this site was potentially one of the most important ever found, he entered a long-term agreement with the ranch owner. The details of the agreement have been kept private.

            Over the next several years, dePalma continued to excavate. He confided in only three other people what he had found, including Walter Alvarez, the man who had originally proposed the asteroid theory. DePalma did publish a paper that described a hadrosaur bone he’d found with a tyrannosaur tooth embedded in it. The bone had healed, indicating that the hadrosaur had gotten away after the attack, which dePalma said proved Tyrannosaurus hunted live prey. Scientists have long debated whether Tyrannosaurus was just a scavenger who lived by finding meals that were already dead or if it hunted live prey. DePalma’s evidence was not taken very seriously because he was just a student and a commercial fossil collector.

            Continued excavation at the site revealed a paddlefish, but underneath it was a mosasaur tooth. A paddlefish is a freshwater fish, but a mosasaur is a giant, saltwater reptile. How could fossils of both be in the same site? DePalma and the others tried to come up with a theory to explain this, but they couldn’t.

Paddlefish
Raver Duane, U.S. Fish and Wildlife Service, Public domain, via Wikimedia Commons
Mosasaur
Nobu Tamura email:nobu.tamura@yahoo.com http://spinops.blogspot.com/, CC BY-SA 4.0, via Wikimedia Commons

            Then he found small impact craters, about three inches across. At the bottom of each crater was a normal-sized tektite. DePalma was sure they had to be from the asteroid that ended the Cretaceous Period, even though the impact site was about 2000 miles away. He arranged to have a laboratory compare the tektites to material from the Chicxulub (CHICKS-ih-lube) Crater. They matched! The asteroid impact was so explosive that debris was thrown 2000 miles away!

            For years dePalma had worked on the site in secret, sharing it with just a few others. But in 2019, he invited a reporter from New Yorker magazine to see the site and tell the world its story. When the story was published, the scientific community was skeptical. The normal procedure for announcing a significant discovery would be to submit a paper to a peer-reviewed journal where experts would evaluate the evidence before it was published, not submit it to a literary magazine. Many scientists disparaged his theories because dePalma was just a student only working on a PhD, a nobody who dug up fossils to sell rather than to study. But they sold dePalma short, as evidence he was right continued to pour in. (And he did eventually publish papers in peer-reviewed journals.)

Depiction of a Cretaceous forest of what is today the Tanis site, in North Dakota, hours after the K-Pg impact. Notice a burnt carcass of a Thescelosaurus, an impaled turtle, a small mammal and a small ornithuran avialan.
YellowPanda2001, CC0, via Wikimedia Commons

            DePalma has named the site Tanis, after an ancient Egyptian city. In the late Cretaceous, a large inland sea stretched from the Gulf of Mexico to what is now the U.S./Canadian border. What is now North Dakota was subtropical. DePalma and the people he has now working with him on the site have determined that Tanis was a sandbar located between a river and a forest. They think that when the asteroid hit in the Gulf of Mexico, it created a gigantic earthquake. It took maybe ten minutes for the shock waves to reach Tanis. The disturbance caused giant waves to form on the inland sea shown in the map above. They flung sea creatures, such as the mosasaur, at Tanis, many miles away. In addition, waves were formed in the nearby river, flinging freshwater creatures onto the site. DePalma found a turtle that was flung so hard that a tree branch went right through its body.

            Continued excavation has also revealed

  • Fish with asteroid debris clogging their gills,
  • Ant nests with the ants still in them and asteroid debris in their tunnels,
  • Large feathers that likely came from a large dinosaur,
  • Broken bits from almost all the dinosaurs known to have lived in that area during the late Cretaceous,
  • A small burrow inhabited by a small mammal,
  • Dinosaur eggs and hatchlings,
  • Pterosaur bones,
  • A partial mummified Thescelosaurus with its skin still intact,
  • And pieces of the actual asteroid preserved in amber.
Thescelosaurus
Nobu Tamura (http://spinops.blogspot.com), CC BY-SA 3.0, via Wikimedia Commons

            DePalma and his crew continue to work on the site. It will take years to explore it thoroughly. Right now, though, it’s an amazing picture of what happened the day the dinosaurs died.

Death of the Dinosaurs: Part 2

Death of the Dinosaurs: Part 1

Sources (Click Me!)

Barras, Colin. “Astonishment, Skepticism Greet Fossils Claimed to Record Dinosaur-Killing Asteroid Impact.” Science. 1 April 2019. https://www.science.org/content/article/astonishment-skepticism-greet-fossils-claimed-record-dinosaur-killing-asteroid-impact


Black, Riley. “Fossil Site May Capture the Dinosaur-Killing Impact, but It’s Only the Beginning of the Story.” Smithsonian Magazine. 3 April 2019. https://www.smithsonianmag.com/science-nature/fossil-site-captures-dinosaur-killing-impact-its-only-beginning-story-180971868/


Hunt, Katie. “Fragment of the Asteroid That Killed Off the Dinosaurs May Have Been Found.” CNN. 11 May 2022. https://www.cnn.com/2022/05/11/world/dinosaur-apocalypse-tanis-fossil-site-scn/index.html


Preston, Douglas. “The Day the Dinosaurs Died.” New Yorker. 29 March 2019. https://www.newyorker.com/magazine/2019/04/08/the-day-the-dinosaurs-died

Death of the Dinosaurs, Part 2

What is the evidence that an asteroid hit the Earth? The history of the Earth is recorded in rocks…

            One of the most basic things geologists study are layers of rock. You’ve probably seen them.

Rock layers are easily seen in the Grand Canyon

            These layers are laid down by sand, river silt, lava, and other inorganic ground cover. Some are formed quickly; others take thousands of years. Earthquakes can shove some layers up and others down. Each layer represents an era of time.

            Scientists can determine the age of layers of rock by looking at fossils and elements found in the rock. Some elements are especially helpful in this because they change over time. For example, some forms of potassium change into argon. Scientists know how long it takes for this to happen (millions of years), so by measuring how much of a sample is still potassium and how much argon, they can tell how old the rock is. They can also do this with some uranium, which changes into lead. It’s more complicated than that, but that’s the basic idea.

            Scientists have known for a long time that there is a layer of rock that marks the end of the dinosaurs. It’s called the K-Pg boundary and it dates to 66 million years ago, (K stands for the German word for Cretaceous and the Pg for Paleogene, the next time period.)  Below that layer dinosaur fossils are found. No dinosaur fossils have ever been found above it.

            At first, scientists believed that this extinction happened gradually. Dinosaurs died out because they were replaced by “superior” mammals. But in the mid-1970s, while studying layers of rock in Italy, geologists Walter Alvarez and Bill Lowrie, noted that the layer of rock below the K-Pg boundary had loads of microfossils of sea creatures in it, but a thin layer of clay just above it had almost none. It looked like nearly all these creatures had died suddenly. Alvarez realized that their near extinction occurred at the same time with a much bigger extinction – the dinosaurs!

Cretaceous-Tertiary boundary clay
Jeffrey Beall, CC BY 4.0, via Wikimedia Commons

            Alvarez talked to his father, Luis Alvarez, a Nobel prize winning physicist, about the problem. His father had the idea of trying to look for the element iridium in order to tell if the layer of clay was deposited quickly (which could mean a catastrophe killed the dinosaurs) or gradually (which would mean scientists were right about dinosaurs dying off slowly). Iridium comes from asteroids. It’s very, very rarely found on Earth. But dust from asteroids drifts down through the atmosphere in tiny amounts at a consistent rate. If there was a lot of iridium dust, that would mean the extinction happened gradually. If a small amount, then it happened quickly.

            But father and son were not prepared for what they found: a lot of iridium. That should have meant that the layer was laid down gradually, but it was too much iridium, nine times more than just dust could account for. They decided to look in another location of the K-Pg boundary to see if they found the same thing. They found a site in Denmark. It also had lots of iridium. Later a site in Spain got the same result.

            Father and son discussed the idea that the iridium could have come from an asteroid hitting the Earth, but they couldn’t figure out how one impact could cause worldwide extinction. Walter presented the iridium data at a conference and met with lots of resistance. Scientists did not want to let go of the idea that dinosaurs had died out gradually.

Artist impression of asteroid impact
Donald E. Davis, Public domain, via Wikimedia Commons

            Luis then had the idea that a large enough impact would cast so much debris into the air that sunlight would be blocked. With no sunlight, plants wouldn’t grow. Plant eaters would have nothing to eat and would die. Then meat eaters would have nothing to eat. This could cause mass extinction. Meanwhile, reports came in from all over the world showing lots of iridium in the K-Pg boundary. But nearly all scientists still rejected the idea of an asteroid impact leading to mass extinction.

            Over the next decade other evidence of an impact was found in rocks. Scientists found shocked quartz in the K-Pg boundary. Shocked quartz is formed from a powerful shock wave (like an earthquake) passing through rock and deforming the structure inside regular quartz. An asteroid impact would have sent a shock wave like that through the ground. They also found tektites, which are made when rock is heated so hot it becomes liquid (usually by a volcano). Bits of liquid rock are flung into the air. When they get high enough, the rock solidifies, and it falls to Earth in a distinctive tear-drop shape. An asteroid hitting the Earth would have made an explosion so hot it would have melted the rock and produced tektites. Scientists also found sand deposits that indicated a tsunami had occurred and soot from the worldwide firestorm there would have been.

Tektite
James St. John, CC BY 2.0, via Wikimedia Commons

            All this was great, but skeptics still held out. They asked, “If an asteroid hit the Earth, where is the crater that it would have formed?” It wasn’t until 1990 that scientists found that the Gulf of Mexico had been hiding the crater. The Chicxulub Crater in the Yucatan Peninsula became the smoking gun that confirmed that a huge asteroid had indeed struck the Earth. Scientists were able to date the crater to about 66 million years ago – the end of the Cretaceous Period and the end of the dinosaurs. This finally convinced most scientists.

The Formation of Chicxulub Crater
The original uploader was David Fuchs at English Wikipedia., CC BY 3.0, via Wikimedia Commons

            Further research has strengthened the asteroid theory. The Chicxulub Crater is the largest impact crater on Earth, about 120 miles wide and 18 miles deep. The asteroid that hit it was about six miles wide and moving about 45,000 mph. As I said in my last blog, it hit with so much power that it blew a huge hole in the Earth and melted thousands of cubic miles of rock, throwing massive debris into the air. We now know that the rock bed of the impact site was limestone and anhydrite. These rocks would have released vast amounts of carbon dioxide, carbon monoxide, and sulfur into the air when they exploded. The sulfur would have combined with water to form acid rain. All this would have contributed to the extinction event by contaminating the air and reducing oxygen.

            Imagine the horror of that day – an explosion 10 billion times bigger than the WWII atomic bomb, a tsunami with one-thousand-foot-high waves of water covering what is now Mexico and the southern United States, a magnitude 10 earthquake, a worldwide firestorm, and billions of tons of debris, ash, and acid rain polluting the atmosphere. And don’t forget, as I mentioned last week, there were huge volcanoes erupting in what is now India. We don’t know if the asteroid had anything to do with those eruptions or not, but they certainly contributed to the extinction event. About 75% of life on Earth became extinct.

            It’s hard to picture it all, but a recent discovery in North Dakota gives us a freezeframe of that day. That site will be the subject of next week’s blog.

Death of the Dinosaurs: Part 1

Death of the Dinosaurs: Part 3

Sources (Click Me!)

Alvarez, Walter. T.rex and the Crater of Doom. Princeton University Press. 1997.


“Asteroid as Powerful as 10 Billion WWII Atomic Bombs May Have Wiped Out the Dinosaurs.” CNN. 10 September 2019. https://wtop.com/gallery/science/asteroid-as-powerful-as-10-billion-wwii-atomic-bombs-may-have-wiped-out-the-dinosaurs/


“Asteroid Impact that Killed Dinosaurs Triggered ‘Mega-Earthquake’ that Lasted Months.” Press Release Montclair State University. 19 October 2022. https://www.montclair.edu/newscenter/2022/10/19/asteroid-impact-killed-dinosaurs-triggered-mega-earthquake-lasted-months/


Black, Riley. “What Happened in the Seconds, Hours, Weeks After the Dino-Killing Asteroid Hit Earth?” Smithsonian Magazine. 9 August 2016. https://www.smithsonianmag.com/science-nature/what-happened-seconds-hours-weeks-after-dino-killing-asteroid-hit-earth-180960032/


Cornell, Sean, et al. “The Tsunami that Killed Dinosaurs!” InTeGrate. Pennsylvania State. n.d. https://www.e-education.psu.edu/earth107/node/1623


Kaufman, Mark. “Scientists Reveal Deadly Earth just after the Dinosaur Asteroid Hit.” 4 November 2023. Mashable. https://mashable.com/article/dinosaur-extinction-asteroid-cause


Lea, Robert. An Asteroid and Volcano ‘Double Punch’ Doomed the Dinosaurs, Study Suggests. Space.com. 21 Sept. 2022. https://www.space.com/dinosaur-extinction-volcanoes-aided-asteroid-impact


Osterloff, Emily. “How an Asteroid Ended the Age of the Dinosaurs.” Natural History Museum of London. n.d. https://www.nhm.ac.uk/discover/how-an-asteroid-caused-extinction-of-dinosaurs.html


Roden, Nathan. “How Did We Find Out that an Asteroid Killed the Dinosaurs?” ScIU Indiana University Bloomington. 8 April 2023. https://blogs.iu.edu/sciu/2023/04/08/an-asteroid-killed-the-dinosaurs/


Smith, Roff. “Here’s What Happened the Day the Dinosaurs Died.” National Geographic. 111 June 2016. https://www.nationalgeographic.com/animals/article/what-happened-day-dinosaurs-died-chicxulub-drilling-asteroid-science

The Day the Dinosaurs Died, Part 1

Everyone knows an asteroid killed the dinosaurs. But is that all we know? Join me as we go down the rabbit hole of how the dinosaurs went extinct…

            Sixty-six million years ago, life on Earth was very different from today. Trees, ferns, and flowering plants covered the land. There wasn’t any grass (despite what the picture below shows. I couldn’t find a free Cretaceous scene anywhere without green ground). Grass hadn’t evolved yet.

User:Debivort, CC BY-SA 3.0, via Wikimedia Commons

            The only mammals were small creatures, no bigger than about three feet long. Dinosaurs dominated the planet. There were small dinosaurs, medium-sized dinosaurs and BIG dinosaurs. They lived in every part of the world. They lived in valleys and on mountains. They lived in dry places and wet places. They lived in forests and on open plains. They had ruled the Earth for 180 million years, and it seemed they would continue to do so indefinitely.

            But out in space an asteroid was plunging toward Earth. It was about six miles wide and the height of Mt. Everest. When it reached the Earth’s atmosphere, it would have looked like a fireball brighter than the sun. It was seen, though, for only a few seconds before it hit the Earth because it was hurtling through the air at about 45,000 mph! It hit in the Yucatan Peninsula in Mexico, forming a crater that covers a large portion of the Gulf of Mexico. The crater has been named Chicxulub (CHICKS-ih-lube) Crater.

NASA/JPL-Caltech, modified b, Public domain, via Wikimedia Commons

            The asteroid hit with a force 10 billion times larger than the atomic bomb detonated on Hiroshima, blowing a hole in the ground 120 miles wide and 18 miles deep. Imagine how loud that explosion must have been! In an instant, the intense heat of the explosion vaporized the asteroid and turned thousands of cubic miles of rock into liquid and spewed it into the air, like a colossal volcano erupting. Anything within 600 miles or more would have been instantly incinerated by the fireball. A combination of soot, sulfuric gases, and extremely fine dust was flung into the atmosphere. For the next several hours, titanic winds blew this debris around the whole Earth. They ignited a world-wide firestorm that probably killed most of life on Earth. In addition, a mega-earthquake shook all of Mexico and Central America, the southern United States, and as far south as far as Argentina. The earthquake (magnitude 13 – likely the biggest earthquake the Earth has ever felt) triggered giant tsunamis and mudslides. One-thousand-foot-high waves of water hit the coast where now Texas, Alabama, Mississippi, northern Mexico, and Cuba lie. Secondary waves traveled as far as what is now North Dakota.

Continent placement at the end of the Cretaceous Era
Merikanto, CC BY-SA 4.0, via Wikimedia Commons

            Life that somehow survived this, now faced another horror. Dust and soot lingered in the atmosphere blocking most of the sunlight for at least a year. Without sunlight plants couldn’t grow and thrive. Plant eaters lost their food source and died. Meat eaters lost their food source and died. In addition, the lack of sunlight lowered the temperature on Earth by about 80° Fahrenheit.

            As if this weren’t bad enough, volcanos in India had been erupting at this same time, with lava flows covering 190,000 square miles of land, killing all life in that area. The eruptions also added more toxic fumes and debris to the atmosphere.

            Scientists disagree about how long it took, but about 75% of all life on earth, plant and animal, died because of the asteroid hit and the volcanos, including all the dinosaurs (except birds which most scientists believe are direct descendants of dinosaurs). Some small animals survived, including the ancestors of today’s frogs, snakes, lizards, alligators, crocodiles, a variety of insects, birds, and mammals.

            How do we know all this happened? I’ll explain in my next blog.

Death of the Dinosaurs: Part 2

Death of the Dinosaurs: Part 3

Sources (Click Me!)

“Asteroid as Powerful as 10 Billion WWII Atomic Bombs May Have Wiped Out the Dinosaurs.” CNN. 10 September 2019. https://wtop.com/gallery/science/asteroid-as-powerful-as-10-billion-wwii-atomic-bombs-may-have-wiped-out-the-dinosaurs/

Asteroid Impact that Killed Dinosaurs Triggered ‘Mega-Earthquake’ that Lasted Months.” Press Release Montclair State University. 19 October 2022. https://www.montclair.edu/newscenter/2022/10/19/asteroid-impact-killed-dinosaurs-triggered-mega-earthquake-lasted-months/

Black, Riley. “What Happened in the Seconds, Hours, Weeks After the Dino-Killing Asteroid Hit Earth?” Smithsonian Magazine. 9 August 2016. https://www.smithsonianmag.com/science-nature/what-happened-seconds-hours-weeks-after-dino-killing-asteroid-hit-earth-180960032/

Cornell, Sean, et al. “The Tsunami that Killed Dinosaurs!” InTeGrate. Pennsylvania State. n.d. https://www.e-education.psu.edu/earth107/node/1623

Kaufman, Mark. “Scientists Reveal Deadly Earth just after the Dinosaur Asteroid Hit.” 4 November 2023. Mashable. https://mashable.com/article/dinosaur-extinction-asteroid-cause

Lea, Robert. An Asteroid and Volcano ‘Double Punch’ Doomed the Dinosaurs, Study Suggests. Space.com. 21 Sept. 2022. https://www.space.com/dinosaur-extinction-volcanoes-aided-asteroid-impact

Osterloff, Emily. “How an Asteroid Ended the Age of the Dinosaurs.” Natural History Museum of London. n.d. https://www.nhm.ac.uk/discover/how-an-asteroid-caused-extinction-of-dinosaurs.html

Roden, Nathan. “How Did We Find Out that an Asteroid Killed the Dinosaurs?” ScIU Indiana University Bloomington. 8 April 2023. https://blogs.iu.edu/sciu/2023/04/08/an-asteroid-killed-the-dinosaurs/

Smith, Roff. “Here’s What Happened the Day the Dinosaurs Died.” National Geographic. 111 June 2016. https://www.nationalgeographic.com/animals/article/what-happened-day-dinosaurs-died-chicxulub-drilling-asteroid-science 

When Did the Dinosaurs Live?

This blog is the first in a series that will explore the timeline of Earth’s history, from the formation of the planet to the dominance and eventual extinction of dinosaurs.

           This blog is about dinosaurs in time; that is, dinosaurs in the timeline of Earth’s history. Not dinosaurs on time, because dinosaurs were hardly ever on time seeing they didn’t have clocks.

           Scientists say the Earth was formed 4.6 billion years ago. At first it was just molten lava, hundreds of miles deep. Over millions of years the Earth cooled and a crust appeared.

Artist’s impression of the Hadean Eon.
Tim Bertelink, CC BY-SA 4.0, via Wikimedia Commons

            The first lifeform that existed was a sort of blue-green algae. Then other lifeforms appeared, including shellfish. That whole time period of more than four billion years is called the Precambrian Eon. From 542 million years ago to the present age is the Phanerozoic Eon. It’s divided into three eras, the Paleozoic, the Mesozoic, and the Cenozoic. During the Paleozoic (from 541 to 252 million years ago) life began to bloom. The first fish, first amphibians, and the first reptiles appeared. The first plants also began to grow. But then a massive extinction wiped out 90% of life on Earth. Its cause is not known, but it ended the Paleozoic Era making way for the Mesozoic Era (from 252 to 66 million years ago).

           That’s when we get to the good stuff: Dinosaurs! The Mesozoic is divided into three time periods: the Triassic, the Jurassic, and the Cretaceous. And about halfway through the Triassic Period a new kind of animal evolved: a dinosaur.

Timeline of Earth (MYA means millions years ago))
Thanaben, CC BY-SA 3.0, via Wikimedia Commons

           During the Triassic the Earth was warm and fairly dry, with ice at the north and south poles. (Although Santa Claus hadn’t moved in yet.) Most of the large island masses gathered together in a supercontinent called Pangaea. Conifers, cycads (which looked like mutant pineapples), and ferns were the most common plants, and reptiles ruled the planet. It was about 240 million years ago that the first dinosaurs appeared. They were small and walked on two legs. Over millions of years, they began to change, and many varieties of dinosaurs appeared. Some were meat eaters; others, plant eaters. Some grew to large sizes. These included Riojasaurus and Lessemsaurus. But then 201 million years ago, another mass extinction took place, probably caused by volcanic action in the Atlantic Ocean, rising sea levels, and climate change.

Pangaea breaking up
Public Domain U.S. Dept. of the Interior

           Some dinosaurs survived and moved into the Jurassic Period. Pangaea broke apart and, over millions of years, formed the continents we know today. Their environment ranged from arid deserts to lush tropical forests. Conifers and ferns were the main plants. Most importantly, dinosaurs dominated each new continent. Some of the largest of all dinosaurs evolved during this time, including Alamosaurus, Argentinosaurus, and Dreadnaughtus. The fierce predator Allosaurus also lived in this time period. And the earliest known bird, Archaeopteryx, emerged in the late Jurassic.

USGS; Diarama by Masato Hattori. Map courtesy of Colorado Plateau Geosystems Inc., Public domain, via Wikimedia Commons

           About 140 million years ago, life on Earth began to change dramatically. Many new life forms emerged while others went extinct. There doesn’t seem to have been any big extinction event, but scientists date this as the beginning of the Cretaceous Period (my favorite time period!). Flowering plants appeared, but there were still a lot of the familiar conifers and ferns. Many new, strange-looking dinosaurs dominated the environment. Tyrannosaurus became an apex predator and weird dinosaurs, such as Parasaurolophus, Ankylosaurus, Triceratops and Pachycephalosaurus roamed around.

           Dinosaurs were so abundant it seemed they would rule Earth forever – but an asteroid colliding with Earth 66 million years ago brought their world to an end. The Cenozoic Era began, with an opening for mammals to dominate the world. The asteroid collision will be the subject of my next blog.

Sources (Click Me!)

Davis, Josh. “The Triassic Period: The Rise of the Dinosaurs.” London Natural History Museum, n.d., https://www.nhm.ac.uk/discover/the-triassic-period-the-rise-of-the-dinosaurs.html

“Hadean Eon: The Formation of Earth (4.6 to 4.0 billion years ago).” EarthHow, 2024. https://earthhow.com/hadean-eon/

“Mesozoic.” U.S. Dept. of the Interior. https://www.usgs.gov/youth-and-education-in-science/mesozoic

Title Image of Triceratops facing Tyrannosaurus
Marcin Chady, CC BY 2.0, via Wikimedia Commons

How the Brontosaurus Lost its Name

Ever wonder how the Brontosaurus lost its name? Commonly known as the icon of Sinclair Oil, this sauropod’s history is complex and newsworthy.

           The Brontosaurus is one of the most famous dinosaurs in the world. Millions of people know its name. Most can recognize its huge shape. It’s been on lunch boxes, made into countless toys, and was featured on a U.S. postage stamp. It even served as the official icon of Sinclair Oil company. However, there is one problem: there is no dinosaur named Brontosaurus.

           How did this happen? When dinosaurs were first discovered in the 1820s, the idea of those huge reptiles stalking the earth caught people’s imagination. Every museum in the world wanted to display a huge skeleton of a dinosaur. But it takes many years to find dinosaur bones, dig them up and put together a dinosaur skeleton. Over the next sixty years the competition to discover dinosaur bones grew, and then it became especially fierce during the 1880s. In fact, that time is now known as the “Bone War.”

           From 1877 to 1892, two paleontologists in particular, Edward Cope of the Academy of Natural Sciences in Philadelphia and Othniel C. Marsh of the Peabody Museum in Connecticut, were the fiercest competitors. They used their own money to finance expeditions and to buy dinosaur bones from other fossil hunters.

           In the beginning Cope and Marsh just paid collectors to send them fossils. But this was only the start. As the rivalry intensified, each side spied on the other, stole bones when they could, bribed workers, and even blew up fossils with dynamite so that the other side couldn’t get them. As soon as either dinosaur hunter got new bones, he rushed to get a description into print. Whoever publishes a description of a new dinosaur first gets to name it, and each man wanted to be the one to name the most. In the end Cope lost. He named 56 new dinosaur species, while Marsh named 80. And by the end of the Bone Wars in 1892, both men had gone nearly bankrupt trying to be the best (or most famous) paleontologist. And the hurry of both men led to mistakes.

Tadek Kurpaski from London, Poland, CC BY 2.0, via Wikimedia Commons

           In 1877 Marsh published a papernaming a new dinosaur, Apatosaurus ajax. Its name means “deceptive lizard,” which turned out to be the truth. The description was based on only a few bones. Two years later Marsh published another article describing what he thought was a different dinosaur, Brontosaurus excelsius.  This description was based on one of the most complete skeletons of a long-necked dinosaur ever found. Brontosaurus means “thunder lizard,” and the catchy name became popular. The mount of that Brontosaurus skeleton in the Yale Peabody Museum of Natural History increased its popularity. Unfortunately, one of the missing pieces of the skeleton was its skull. Not to worry. Marsh just put a Camarasaurus skull on it.

           But, in 1903, Chicago paleontologist Elmer Riggs took a look at both dinosaurs. He determined that the two dinosaurs were actually the same dinosaur. It was given the name Apatosaurus first, and the International Code of Zoological Nomenclature states that the oldest name has priority, so that is the name used by scientists. Brontosaurus became Apatosaurus. And in 1979 scientists finally put the right skull on the skeleton. Still, the general public didn’t let go of the name Brontosaurus until about the 1990s. It was just too cool a name to let go.

           However, all is not lost. There is a movement to resurrect the name Brontosaurus. In 2015 paleontologists studied hundreds of bones from Apatosaurus and the dinosaur called Brontosaurus and found differences in the neck, back, and shoulder bones. Originally scientists thought those difference were because one of the dinosaurs was a juvenile. Now some feel these differences are enough to say Brontosaurus and Apatosaurus are different dinosaurs. But this has not gained wide acceptance. More research may resolve the problem. But a lot of people who are just dinosaur lovers would welcome the return of the “thunder lizard.”

Cover Image Source: An Errant Knight, CC BY-SA 4.0, via Wikimedia Commons